Blind channel identification for speech dereverberation using l1-norm sparse learning

نویسندگان

  • Yuanqing Lin
  • Jingdong Chen
  • Youngmoo Kim
  • Daniel D. Lee
چکیده

Speech dereverberation remains an open problem after more than three decades of research. The most challenging step in speech dereverberation is blind channel identification (BCI). Although many BCI approaches have been developed, their performance is still far from satisfactory for practical applications. The main difficulty in BCI lies in finding an appropriate acoustic model, which not only can effectively resolve solution degeneracies due to the lack of knowledge of the source, but also robustly models real acoustic environments. This paper proposes a sparse acoustic room impulse response (RIR) model for BCI, that is, an acoustic RIR can be modeled by a sparse FIR filter. Under this model, we show how to formulate the BCI of a single-input multiple-output (SIMO) system into a l1norm regularized least squares (LS) problem, which is convex and can be solved efficiently with guaranteed global convergence. The sparseness of solutions is controlled by l1-norm regularization parameters. We propose a sparse learning scheme that infers the optimal l1-norm regularization parameters directly from microphone observations under a Bayesian framework. Our results show that the proposed approach is effective and robust, and it yields source estimates in real acoustic environments with high fidelity to anechoic chamber measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A general framework for multi-channel speech dereverberation exploiting sparsity

We consider the problem of blind multi-channel speech dereverberation without the knowledge of room acoustics. The dereverberated speech component is estimated by subtracting the undesired component, estimated using multi-channel linear prediction (MCLP), from the reference microphone signal. In this paper we present a framework for MCLP-based speech dereverberation by exploiting sparsity in th...

متن کامل

Room impulse response estimation by iterative weighted L1-norm

This paper presents a novel method to solve for the challenging problem of acoustic Room Impulse Response estimation (RIR). The approach formulates the RIR estimation as a Blind Channel Identification (BCI) problem and it exploits sparsity and non-negativity priors to reduce illposedness and to increase robustness of the solution to noise. This provides an iterative procedure based on a reweigh...

متن کامل

Speech Enhancement using Adaptive Data-Based Dictionary Learning

In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...

متن کامل

Blind MultiChannel Identification and Equalization for Dereverberation and Noise Reduction based on Convolutive Transfer Function

This paper addresses the problems of blind channel identification and multichannel equalization for speech dereverberation and noise reduction. The time-domain cross-relation method is not suitable for blind room impulse response identification, due to the near-common zeros of the long impulse responses. We extend the cross-relation method to the short-time Fourier transform (STFT) domain, in w...

متن کامل

Blind Dereverberation of Audio Signals

This project examines the problem of single channel blind dereverberation. After estimating the T60 value, a time-domain binary masking approach was used to remove regions of the signal that were largely dominated by reverberant energy. Performance of the system was examined for several different classes of audio (hand clapping, drums, and speech) and for varying amounts of reverberation. In ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007